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In this paper, we first described the concept of k-anonymity and different approaches of its 
implementation, by formalizing the main theoretical notions. Afterwards, we have analyzed, 
based on a practical example, how the k-anonymity approach applies to the data-mining 
process in order to protect the identity and privacy of clients to whom the data refers. We 
have presented the most important techniques and algorithms used in order to enforce k-
anonymity. We have studied possible approaches to ensure that k-anonymity preserves the 
privacy of the data mining process in order to assure an efficient, safe and effective data 
mining delivery as an e-service. We have depicted several software implementations that 
employ k-anonymity. We have developed, using the Compute Unified Device Architecture, an 
algorithm that analyzes k-anonymity and is suitable for extracting tuples with the same quasi-
identifying values from a large database structured as a private table. 
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Introduction 
Due to the tremendous evolution of the 

information technology and the increasing 
necessity for storage, access and analysis, the 
field of knowledge discovery and data 
mining emerged in the recent past. In 
parallel, the Internet spreading provided a 
platform where organizations conduct 
commercial transactions, leading to the 
development of e-commerce. After that, the 
research and development in the field of e-
commerce led to the next evolutionary phase, 
namely, e-service. As it is generally defined, 
an e-service contains three main components: 
the service provider, the service receiver and 
the channels of service delivery that are 
based on the information technology [1]. 
Usually, the main channel used for delivering 
an e-service is the Internet, but channels such 
as a call center, a telephone, a TV channel, 
can also be taken into account when 
delivering e-services to customers. Because 
e-services involve a lot of personal data 
exchange, privacy is one of the most 
important challenges when implementing e-
services, because people who use such 
services want to be sure that their personal 
information is safe and will remain secure 

and confidential. On one hand, these privacy 
concerns might make the service provider 
hesitant to offer online services and on the 
other hand the service receiver might refuse 
the usage of such services without having the 
guarantee that his own data privacy is 
secured.  
Data mining in conjunction with business 
intelligence applications interferes with the  
e-services domain and becomes suitable for 
being delivered as an e-service, mainly 
because of the fact that several small to 
medium range businesses are constrained by 
the high costs required for setting up and 
maintaining the infrastructure of support 
technologies and business intelligence 
software [2]. In order to assure an efficient, 
safe and effective data mining delivery as an 
e-service using the Internet, Web service 
technologies are introduced to provide a 
layer of abstraction above existing software 
systems. The entire data mining e-service 
model requires interaction and 
communication between e-service agents and 
clients, and between e-service providers and 
e-service agents. These interactions need to 
be implemented in a reliable, stable, scalable 
and secure way and this is the reason why we 
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study in this paper a modern and novel 
approach, the k-anonymity concept, used to 
preserve the privacy in the data mining 
process, including those e-services that 
employ data mining.  
In recent years, the information society, the 
private and public organizations are facing an 
exponential increase in the amount and 
variety of daily collected data. In this 
context, data mining techniques are 
becoming increasingly important in assisting 
the decision making process and in extracting 
knowledge from large volumes of data in the 
form of models, patterns and trends. 
Although most of the time the results of the 
data mining process do not explicitly contain 
the original data stored in databases, these 
results could still be used to deduce other 
pieces of information contained in the 
original data that were not intended for 
release because it could affect the privacy of 
people referred in the data. Data owners or 
holders face difficult challenges to manage, 
store, protect and release information without 
compromising the privacy, confidentiality or 
even national interests. 
The data mining technology raised a serious 
challenge for the researchers in the field: 
combining the legitimate usage and sharing 
of mined information while preserving the 
privacy of individuals. Therefore, the 
guaranteeing of proper protection of data is 
of paramount importance taking into account 
the risk of violating the privacy of 
individuals to whom the stored information 
refers. The collection of data that includes 
personal information and its analysis requires 
a high degree of privacy protection.  
The techniques used for extracting 
knowledge from databases must be designed 
as to provide guarantees on the privacy of 
individuals referred to the data in question. In 
this context, the concept of privacy 
preserving data mining has emerged, as a 
response to these concerns [3]. The privacy 
preserving data mining seeks to ensure a 
compromise between the exchange of 
information for data mining analysis and 
keeping that information safely, in order to 
protect the privacy of parties involved. In 

order to preserve confidentiality, researchers 
have proposed several approaches whose 
techniques for protecting data are based on 
modifying (masking or erasing) the original 
sensitive data that should not be revealed [3]. 
The basic concepts of these approaches are 
“loss of privacy” and “loss of information”. 
The loss of privacy concept measures the 
capacity of estimating the original data from 
the modified data while the loss of 
information concept measures the loss of 
accuracy in the data [4]. If the level of 
confidentiality regarding respondents to 
which the data refers to is higher, the results 
from the process of data mining are less 
accurate and vice versa. Therefore, the main 
purpose of these approaches is to provide 
equilibrium between privacy and accuracy. 
There are also other approaches to privacy 
preserving data mining, like those 
implementing cryptographic techniques to 
prevent leaks of information [5] [6] [7]. The 
main disadvantage of cryptography-based 
techniques is that they usually require a lot of 
processing power and consume a significant 
amount of time. After establishing a clear 
definition of privacy and after identifying the 
information that is sensitive in the original 
data and must be protected against 
disclosure, one can choose privacy 
preserving data mining techniques. In the 
following we will address the notion of k-
anonymity [8] [9] [10] a recent approach 
related to the privacy used for modeling the 
protection of released data against possible 
retrieval of private data from respondents to 
which the data refers to. Recently introduced, 
the notion of k-anonymous data mining is an 
approach linked to ensuring the preservation 
of privacy when data mining results are being 
released. According to the basic principle of 
k-anonymity, each released data must respect 
the condition that every combination of 
values, externally available, corresponding to 
the released attributes, can be associated to a 
minimum number of k respondents. 
 
2 The k-anonymity 
As mentioned before, the notion of k-
anonymity [8] [9] [10] highlights the 
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protection of released data, as a consequence 
of the data mining process, against possible 
retrieval of private data from respondents to 
which the data refers to. We first briefly 
depict the main theoretical notions that we 
will use later when we illustrate the k-
anonymity approach by a series of examples. 
A detailed discussion of these notions and 
concepts is presented in [6]. 
Definition 1. For a relational table 
𝐵(𝐴1, … ,𝐴𝑛) with a finite number of tuples, 
the finite set of attributes of 𝐵 is {𝐴1, … ,𝐴𝑛}. 
For a table 𝐵(𝐴1, … ,𝐴𝑛) if we consider a 
subset of the set of attributes, 
{𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛} and a tuple 𝑡 ∈ 𝐵, 
we will denote the sequence of 
values 𝑣𝑖, … ,𝑣𝑗 of 𝐴𝑖 , … ,𝐴𝑗 in 𝑡 by 
𝑡[𝐴𝑖, … ,𝐴𝑗] and the projection of attributes 
𝐴𝑖, … ,𝐴𝑗 in 𝐵 (maintaining duplicate tuples), 
by𝐵[𝐴𝑖, … ,𝐴𝑗]. We will assume that each 
tuple is specific to one person and every 
person appears only in one tuple. In order to 
protect the data and limit the ability to link 
released information to other external data, 
the data holder must identify all the attributes 
that contain private information and could be 
used to link with external information about 
this person. These attributes include private 
data and explicit identifiers such as name, 
address and others, or they may include 
attributes whose combination could help to 
certainly identify a person, such as birth date 
and gender. Dalenius [11] named these 
attributes quasi-identifiers. Person specific 
data has to be released such that the quasi-
identifier does not link to other information 
that could affect the privacy of the persons in 
question.  
Definition 2. If  𝑈 is a population of entities, 
𝑇(𝐴1, … ,𝐴𝑛) an entity specific table,  
𝑓𝑐 :𝑈 → 𝑇and 𝑓𝑔:𝑇 → 𝑈′, where 𝑈 ⊆ 𝑈′, a 
quasi-identifier of 𝑇, 𝑄𝑇is a set of attributes 
{𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛} ie ∃𝛼𝑖 ∈ 𝑈  such 
that 𝑓𝑔(𝑓𝑐(𝛼𝑖)[𝑄𝑇]) = 𝛼𝑖. 
Attributes that appear both in private and 
public data are suitable candidates for linking 
and constitute the quasi-identifier, an 
important reason to control their disclosure. 
Usually, the data holder can easily identify 

these attributes. But what happens if the data 
holder does not correctly identify the 
sensitive attributes for linking? In this case, it 
is possible for the individuals to be easily 
identified as the released data becomes less 
anonymous. Many approaches in the 
literature try to solve the conflict between 
disclosure risk and information loss [9], [6]. 
A protected dataset satisfies the k-anonymity 
requirements if for every combination of 
quasi-identifiers there are at least k records 
that share the same combination in the 
dataset. When k-anonymity reaches the 
desired level of protection, minimizing 
information loss becomes the next concern. 
Definition 3. If 𝑇(𝐴1, … ,𝐴𝑛) is a table and 
𝑄𝐼𝑇 its associated quasi-identifier, 𝑇 is said 
to satisfy the k-anonymity if and only if each 
sequence of values in 𝑇[𝑄𝐼𝑇] appears at least 
k times in 𝑇[𝑄𝐼𝑇].  
Lemma. If 𝑇(𝐴1, … ,𝐴𝑛) is a table and 
𝑄𝐼𝑇 = (𝐴𝑖, … ,𝐴𝑗) its associated  
quasi-identifier, {𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛}, 
and 𝑇  satisfies the k-anonymity, then each 
sequence of values in 𝑇[𝐴𝑥] appears at least 
k times in 𝑇[𝑄𝐼𝑇], for 𝑥 = 𝑖, … , 𝑗. 
In the following, we will illustrate the k-
anonymity by a series of examples. We will 
first consider a private table PT, where 
explicit identifiers of persons (such as the 
name, the ID, the address) to which the 
stored data refers to, were removed. On the 
other hand, a number of values of other 
attributes (such as birth date, zip code, 
gender, marital status, etc.) can appear in 
some external tables jointly with the 
respondents’ identities. If certain 
combinations of values of these attributes are 
unique or rare, then it is possible that people 
who have access to such data, can identify 
the respondent to which the data refers to or 
can select a small group of persons having a 
common set of characteristics, group in 
which the person in question belongs to.  
Based on the k-anonymity requirements, 
each tuple in the private table may be 
indistinguishably linked to at least k 
respondents. In order to protect the identity 
and anonymity of individuals whose data are 
involved and to make the identification of 
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these people more difficult by a potential 
attacker, k-anonymity requires that if a 
combination of values of a set of attributes 
(called quasi-identifying attributes) appears 
in the table, then this combination must 
appear at least k times [4]. 
The private table chosen to illustrate the k-
anonymity contains a series of attributes and 
among them, the education level of the 

person, his/her sex, the age of the person and 
also an information related to the fact that the 
person wears or not glasses. The quasi-
identifier is constituted from attributes 
„Education_level”, „Sex” and „Age”. In 
Table1, one can observe a simplified 
representation of the private table, 
highlighted through the quasi-identifier.  

 
Table 1. A simplified representation of a private table 

Education_level Sex Age Tuples Glasses 
Bachelor M 32 20 10Y;10N 

MA F 40 7 2Y;5N 
PhD M 42 2 0Y;2N 

Baccalaureate F 36 8 3Y;5N 
PhD F 45 2 2Y;0N 

Gymnasium M 31 15 6Y;9N 
 
In this representation, tuples with the same 
quasi-identifying values were represented in 
the table as a single tuple. On the right side 
of Table 1, on each row, is placed 
information regarding the number of tuples 
with common characteristics and the number 
of those people who wear or not glasses. 
Possible values of this attribute are denoted 
by Y (yes), corresponding to cases in which a 
person wears glasses and N (no), if that 
person does not wear glasses. In the table, 
there are only two occurrences of males 
being 42 years old and a PhD degree. As a 
consequence of these two occurrences, the k-
anonymity degree for preserving the privacy 
in the private table PT in Table 1 is very 
poor, being k=2 or less. If there is another 
linked external table that contains other 
supplementary attributes, referring to 
respondents from the PT table, the identity of 
respondents can be reduced to one of the two 
people having these common features.  
One can observe that if a tuple has k 
occurrences, then any of its sub-tuples must 
have at least k occurrences, which leads to 
the following conclusion: a condition for 
having k occurrences of a tuple is that there 
are k occurrences of any sub-tuple. This 
condition is necessary but not sufficient. In 
our example, if we consider the k-anonymity 
over the quasi-identifier {Education_level, 

Sex and Age}, it requires that each value of 
individual attributes appears at least k times 
and the same condition is available for any 
sub-tuple corresponding to a combination of 
them. Referring to our example, one can 
observe that there are only two tuples 
referring to males having a PhD degree and 
as a consequence we can certainly say that 
the table will not satisfy the k-anonymity for 
k>2 because after adding the attribute “Age”, 
these occurrences will remain two or less. In 
order to enforce the k-anonymity on such a 
private table, two main techniques with the 
property of preserving the truthfulness of the 
data have been proposed: the generalization 
and the suppression techniques, which we 
will depict in the following.  
The first technique, the generalization, is 
based on replacing each attribute with a more 
general version of it, taking into account a 
domain generalization hierarchy and the 
associated generalization hierarchy of values, 
over the values in the domains. In Figure 1 
we represent an example of the domain and 
value generalization hierarchies, based on the 
quasi-identifying attributes used in our 
example. The generalization can be applied 
at two levels: at a single cell level, if it is 
substituted the cell value with a generalized 
version of it or at the attribute level, if all the 
cells in the corresponding column are 
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generalized. All the values, which differ in 
the private table, can be easily generalized to 
the same value and for this value, the number 
of occurrences is the sum of all occurrences 

of the values from which the generalization 
comes. In this way, the generalization 
enforces the k-anonymity.  

 

 
Fig. 1. An example of the domain and value generalization hierarchies 

 
The second technique used for enforcing the 
k-anonymity on a private table is the 
suppression technique, which is based on 
removing sensitive information in order to 
protect it and is applicable for a single cell, 
for an entire tuple or for an entire column. 
The suppression method consists in removing 
from the table information that forces a large 
amount of generalization to satisfy a k-
anonymity constraint. Therefore, the k-
anonymity is satisfied but with less 
generalization and with a reduced loss of 
information.  
 
3 Algorithms for enforcing k-anonymity 
If the generalization and suppression 
techniques are applied over a private table, 
the obtained tables will provide an improved 
protection of the respondents’ identity but the 
information will be less precise due to the 
generalization and less complete because 
some values are suppressed. Therefore, an 
information loss occurs (both in precision 
and in completeness) and it is very important 
to maintain the information loss under 
control and minimize it. 

In the literature, there are many proposed 
definitions of minimality and studies about 
the process of finding minimal k-anonymous 
tables using the attribute generalization and 
tuple suppression techniques, highlighting 
that these problems are hard to compute [4] 
[12] [13]. In order to select the optimal 
solution, different criteria can be applied to 
all the tables that ensure minimal information 
loss and satisfy the definition of minimality. 
This aspect is of paramount importance in 
data mining where the usefulness of the data 
has a great impact over the whole process. In 
the following, we will present the most 
important existing algorithms used for 
obtaining k-anonymous tables. 
 
3.1 The Samarati’s algorithm 
The Samarati’s algorithm is based on the 
generalization over quasi-identifier attributes 
combined with the tuple suppression and its 
main goal is to suppress less tuples by 
finding a  
k-minimal generalization [9]. As mentioned 
before, the generalization technique is based 
on the domain and value generalization 
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hierarchies and in this case, the definition of 
the domain generalization hierarchy is 
extended at tuples of domains, based on the 
fact that the algorithm operates on a set of 
attributes. In order to obtain the domain 

generalization hierarchy of a domain tuple, 
the involved attributes corresponding to the 
domain tuple must be generalized and some 
of the tuples must be suppressed for 
satisfying the k-anonymity constraint.   

 

 
Fig. 2. An example of a domain generalization hierarchy  

 
In Figure 2 it is presented an example of a 
domain generalization hierarchy obtained by 
using two quasi-identifying attributes, 
“Education_level” and “Sex” which have 
been depicted in Figure 1. The domain tuple 
is, in this case, <E0, S0>. By generalizing the 
original private table in accordance with a 
generalization strategy one can obtain 
different paths of the hierarchy located at 
different levels. The algorithm has to 
compute a generalization that satisfies k-
anonymity within the MAX constraint, a 
threshold that must be specified, representing 
the maximum number of suppressible tuples. 
The algorithm evaluates all the solutions at a 
specific level of the hierarchy starting with 
the Level 0, and if there isn’t any k-
anonymous table that satisfies the MAX 
threshold, it passes to the next superior level 
and repeats the procedure until it finds the 
lowest level where there is a solution that 
satisfies the k-anonymity constraint.  
In our example, the quasi-identifying 
attributes as shown in Table 1 are 
“Education_level” and “Sex”, the domain 
and value generalization hierarchy are 
depicted in Figure 1, and the generalization 
hierarchy is represented in Figure 2. If we 
choose k=4 and the threshold MAX=1, the 
algorithm starts the verification of solutions 
at the Level 0. The solution <E0, S0> 
corresponds to the original table; it is not 4-
anonymous and does not satisfy the MAX 
constraint since the 4-anonymity requires the 
suppression of the two tuples Ph.D, M. The 

algorithm verifies the solutions at Level 1, 
<E0, S1>and <E1, S0> and one can observe 
that only the solution <E0,S1> is 4-
anonymous within the MAX constraint. 
Therefore, this is the lowest level that has a 
solution satisfying the k-anonymity 
constraint and this solution <E0, S1>is 
considered as minimal.  
 
3.2 The k-Optimizealgorithm 
Another algorithm for generalization over 
quasi-identifier attributes and tuple 
suppression is called k-Optimize, proposed 
by Bayardo and Agrawal [14]. For a private 
table PT and an ordered set of quasi-
identifying attributes 𝑄𝐼 = {𝐴1, … ,𝐴𝑛}, the 
k-Optimize algorithm assumes that each 
attribute 𝐴𝑖 ∈ 𝑄𝐼 is defined over a totally 
ordered domain denoted by 𝐷𝑖. If 𝐴 is an 
attribute, its generalization on domain 𝐷 is 
obtained by partitioning 𝐷 into a set of 
ordered intervals {𝐼1, … , 𝐼𝑚} with 𝐷 = ⋃ 𝐼𝑖𝑚

𝑖=1  
and for every elements 𝑣𝑖 ∈ 𝐼𝑖and 𝑣𝑗 ∈ 𝐼𝑗, if 
𝑖 < 𝑗 then 𝑣𝑖 < 𝑣𝑗. For each interval in any 
domain of the quasi-identifying attributes, 
the approach associates an integer called 
index whose assignment reflects on one hand 
the total order relationship over intervals in 
the domains and on the other hand the total 
order relationship among the quasi-
identifying attributes [14]. 
Using the same example as in Table 1, in this 
private table the quasi-identifying attribute is 
“Education_level” and the order among 
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values inside this attribute is “Gymnasium”, 
“Baccalaureate”, “Bachelor”, “MA”, “PhD”. 
In Figure 3 is depicted the index assignment 

obtained without the applying of any 
generalization and considering that each 
attribute value is represented by an interval.  

 

 
Fig. 3. An example of Index assignment to attributes „Education_level”  

 
Taking into account all possible subsets of 
the set 𝐼 of index values, without 
duplications, the k-Optimize algorithm 
constructs a set enumeration tree over the set 
𝐼. For a node 𝑛, children are obtained through 
all the sets that contain the elements in  𝑛 and 

another single element of the set 𝐼 appended 
to 𝑛, in accord with the previously defined 
total order. In Figure 4 is illustrated an 
example of a set enumeration tree over the 
set of indexes 𝐼 = {1,2,3,4,5} . 

 

 
Fig. 4. An example of set enumeration tree over the set 𝐼 =  {1, 2, 3,4,5}of indexes 

 
Each node in the tree depicts possible options 
of generalization for the original table PT and 
therefore the set enumeration tree helps to 
evaluate and select solutions for the k-
anonymity problem. The null node represents 
the root of the node and by appending one 
item, which is lexicographically larger than 
the other items at that particular node of the 
tree, a new level of the tree is constructed. 
Therefore, the data’s dimension influences 
significantly the number of possible nodes in 
the tree, the increasing being exponentially 
and even for small values of 𝑛 it is difficult 
to build the entire tree.  
In order to eliminate this inconvenient, the k-
Optimize algorithm uses a pruning strategy 
based on which a node of the tree is 
eliminated when no descendent of it can 
satisfy the k-anonymity requirements. When 
the maximum computational time has been 
reached, the algorithm can be stopped and 

the solution from that point can be used. This 
technique usually provides satisfactory 
results but it is possible for it not to be 
optimal.    
 
4 Related works: software packages that 
implement certain levels of k-anonymity 
In the following, we will depict several 
software implementations that employ the  
k-anonymity concept.  
One of the most useful implementations is 
related to a globally optimal k-anonymity 
method for the de-identification of health 
data [15], through a globally optimal de-
identification algorithm (Optimal Lattice 
Anonymization) that satisfies the k-
anonymity criterion and is suitable for health 
datasets. It is also presented a comparison 
between this algorithm and another three 
existing k-anonymity algorithms (Datafly, 
Samarati and Incognito) on six public health 
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registry datasets for different values of k and 
suppression limits. In order to compare these 
algorithms three information loss metrics 
have been used: precision, discernibility 
metric and non-uniform entropy. Each 
algorithm’s performance speed was also 
evaluated. The conclusion of this study is 
that for the de-identification of health 
datasets, Optimal Lattice Anonymization is 
an improvement on existing k-anonymity 
algorithms, offering less information loss and 
faster performance compared to current de-
identification algorithms. The Optimal 
Lattice Anonymization algorithm assumes 
that the dataset has more than k records and 
the objective of the algorithm is to find the 
optimal node in the generalization tree. A 
node is considered to be optimal if it is k-
anonymous and has minimal information 
loss. The main three steps of the Optimal 
Lattice Anonymization algorithm are: 
• A binary search is used for each 

generalization strategy to find all the k-
anonymous nodes. 

• The algorithm retains the k-anonymous 
node with the lowest height within the 
strategy for each generalization strategy. 

• After the algorithm has selected the k-
minimal nodes, it chooses the node with 
the smallest information loss as the 
globally optimal solution. Based on a 
monotonicity property, the k-minimal 
node with the smallest information loss 
must also have the smallest information 
loss among all k-anonymous nodes in the 
tree. 

Another software implementation of the k-
anonymity concept is the Datafly algorithm 
[8]. In order to find a k-anonymous dataset a 
heuristic method is used. From all the 
possible quasi-identifiers, the algorithm 
selects the one with the most distinct values 
and generalizes it. The algorithm stops if the 
output generalized dataset is k-anonymous.  
In the following, we will depict the Incognito 
algorithm [8]. First, it starts by considering 
all possible subsets of the quasi-identifiers, 
using two optimization techniques:  
• When evaluating nodes in the 

generalization tree, the algorithm tags as 

k-anonymous the nodes that are above k-
anonymous ones in the same 
generalization strategies.  

• If a node is not k-anonymous in a smaller 
quasi-identifier subset, then, by definition, 
it will not be k-anonymous in a larger 
subset of the quasi-identifiers and 
consequently the lattices for larger subsets 
of quasi-identifiers can be pruned.  

After that, the algorithm evaluates the nodes 
by starting with a bottom up strategy and by 
tagging the generalizations of k-anonymous 
nodes that are found. The main advantage of 
this approach is a significant reduction in the 
number of nodes that need to be evaluated. 
The node with the lowest information loss 
value is selected as being the optimal 
solution. There are multiple versions of 
Incognito.  
An interesting application of the k-anonymity 
concept is the k-anonymous message 
transmission [16], meaning simple and 
efficient protocols that are k-anonymous for 
both the sender and the receiver. In order for 
a communication protocol to be considered 
sender k-anonymous, it must assure that an 
adversary who tries to determine the identity 
of a particular message’s sender can only 
narrow its search to a certain set of k 
suspects. A similar guarantee must be 
assured in what concerns the receiver in 
order to be considered receiver k-
anonymous. In [16] there are presented a 
series of protocols that are k-anonymous for 
both the sender and the receiver in a 
described model where a polynomial time 
adversary is able to see all the traffic within a 
network and control a constant fraction of the 
participants. The protocol does not require 
the existence of trusted third parties and adds 
robustness against adversaries who try to 
disrupt the protocol through perpetual 
transmission or selective non-participation. 
 
5 The Compute Unified Device 
Architecture approach for the k-
anonymity concept 
Graphics Processing Units have been used 
for a long time solely to accelerate graphics 
rendering on computers [17]. In order to 
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satisfy the increasing need for improved 
three-dimensional rendering at a high 
resolution and a large number of frames per 
second, the GPU has evolved from a one-
purpose specialized architecture to multiple 
purposes complex architectures, able to do 
much more than just provide video rendering. 

The acceleration of a broad class of 
applications became possible once with the 
introduction of the NVIDIA Compute 
Unified Device Architecture. The 
architecture and the main characteristics of 
the NVIDIA GPUs are summarized in Figure 
5. 

 

 
Fig. 5. NVIDIA Compute Unified Device Architecture (CUDA)[17] 

 
CUDA is a software and hardware 
architecture that enables the NVIDIA 
graphics processor to execute programs 
written in C, C++, FORTRAN, OpenCL, 
Direct Compute and other languages. A 
CUDA program invokes more parallel 
program kernels. The kernel processes in 
parallel each set of parallel threads. The 
programmer or compiler manages these 
threads by grouping them into thread blocks 
(consisting of more threads) and grids of 
thread blocks (consisting of more thread 
blocks). 
The GPU processor instantiates a kernel 
program on a grid containing parallel thread 
blocks. Each thread from the block executes 
an instance of the kernel and has a unique ID 
associated to registers, to thread’s private 
memory within the thread block [17]. 
The Compute Unified Device Architecture 
hierarchy of threads is mapped to the 
hierarchy of the graphics processing units’ 
hardware processor; a GPU executes one or 
more kernel grids; a streaming 
multiprocessor (SM) executes one or more 
thread blocks; the CUDA cores contained in 
the streaming multiprocessor SM run the 
threads within blocks. A streaming 

multiprocessor SM can process up to 32 
groups of threads called warps. Regarding 
memory hierarchy, each multiprocessor 
contains a set of 32-bit registry with a zone 
of shared memory, which is easily accessible 
for each core of the multiprocessor but 
hidden from other  
multi-processors. Depending on the 
generation of a GPU, the number of registry 
and the size of shared memory vary. Besides 
shared memory, a multiprocessor contains 
two read - only memory caches, one for 
texture and another one for constants. 
In order to improve software performance 
when programming in CUDA, developers 
have to optimize the number of concomitant 
active threads and balance each thread’s 
resources: number of registers and threads 
per multiprocessor, global memory 
bandwidth and the amount of on-chip 
memory assigned per thread. Performance 
increases have been obtained by reordering 
accesses to off-chip memory in order to 
manage requests referring to the same 
memory locations (or contiguous memory 
locations). By applying these techniques, 
many applications improved their execution 
time up to 457X in kernel codes and 431X at 
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a general level [17]. 
In the NVIDIA CUDA programming model 
[17]a system is comprised of a traditional 
CPU (representing the host) and one or more 
massively data-parallel coprocessors 
(representing the devices). The CUDA 
runtime has library functions for managing 
both the device memory and transfers from 
the host to the compute devices.  
All concurrent threads are based on the same 
code even if they may follow different paths 
of execution because each CUDA device 
processor supports the Single-Program 
Multiple Data (SPMD) model [17] and each 
thread resides in the same global address 
space. Data parallel functions, called kernels 
and data structures, corresponding to the 
compute devices, comply with standard 
ANSI C extended with keywords. A kernel is 
usually invoked on thousands of threads and 
describes the work of a single one. Inside 
thread blocks, through built-in primitives, 
threads synchronize their actions and share 
their data. The CUDA programming model 
enables a program’s components, which are 
suited for data parallelism, to be separated 
and executed on a specialized massive data 
parallelism coprocessor. A detailed overview 
on the CUDA programming model is 
depicted in [17].This architecture offers a 
high degree of flexibility when it comes 
about allocating local resources like registers 
or local memory in threads. The programmer 
divides local resources among threads and 
every CUDA core can process a variable 
number of threads. Although this flexibility 
offers a high degree of control over an 
application performance, it also has a great 
impact on optimizing the performance of 
applications. Another important aspect is 
related to the way GeForce GTX480 can 
execute applications and what are the 
elements that improve or limit its 
performance. Numerous software 
applications were ported and evaluated on 
the CUDA platform as a result of its huge 
data processing power [17]. 
 
5.1 The algorithm’s description 
Using the Compute Unified Device 

Architecture, we have developed an 
algorithm that analyzes the k-anonymity 
approach and is suitable for extracting tuples 
with the same quasi-identifying values from 
a large database structured as a private table. 
The number of tuples with the same quasi-
identifying values in a private table is 
important when evaluating the k-anonymity 
level and selecting possible options for 
suppression or generalization in order to 
obtain a desired level of k-anonymity. We 
took into consideration the main aspects of 
improving a CUDA application performance 
and GPU memory management through a 
sequence of progressively optimized kernels. 
The algorithm has been developed in two 
versions. 
In the first version, denoted KNV1, threads 
within each thread block access data by using 
the texture memory, starting at different 
positions within the database while threads 
with the same ID from different blocks are 
starting from the same position.  
The second version of the algorithm, denoted 
KNV2, uses block-level parallelism with 
shared memory database buffering. Instead 
of using the texture memory, this version 
loads a block of data from the database into a 
buffer of shared memory, processes data 
from the buffer, then loads another block of 
data in the buffer and the process is repeated 
until the entire database has been processed. 
The starting point for each thread of KNV2 
depends on buffer size and not on the size of 
the database (as in KNV1). A thread will 
always access the same shared memory area 
during all searches, but data from the shared 
memory will change when buffer updates. 
In the following, we will define four 
important requirements that were taken into 
account when we have designed the 
algorithm that analyses the k-anonymity 
approach and is suitable for extracting tuples 
with the same quasi-identifying values from 
a large database structured as a private table. 
These requirements represent a minimal 
necessary set and if they are not met then the 
de-identified data (obtained in order to k-
anonymize the database) might become 
useless. The requirements are based on the 
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available documentation [15] in this domain 
and were of paramount importance in 
developing the algorithm. 
• The values in the quasi-identifiers are 

generalized by reducing their precision 
and, therefore, the quasi-identifiers are 
represented as hierarchies and a de-
identification algorithm needs to deal with 
this hierarchical nature of the variables.  

• For all values of a given quasi-identifier a 
total order relationship is presumed and a 
quasi-identifier can be recorded to any 
partition of the values that preserves the 
order. The users of the data need to 
specify the interval sizes that are 
appropriate for the analysis that they will 
perform. Otherwise, if this partitioning is 
performed automatically, it may produce 
intervals of unequal sizes that are a 
disadvantage because it makes the 
analysis of such data quite complex and 
significantly reduces its utility. 

• A very practical approach is to use global 
recording where all the records have the 
same recording within each variable, i.e. 
to use global recording instead of local 
recording. If the k-anonymity algorithm 
used the local recording, the 
generalizations performed on the quasi-
identifiers are not consistent across all of 
the records and such inconsistency in 
constructing response categories makes 
the data very difficult to analyze in 
practice using standard data analysis 
techniques.  

• When designing an algorithm for 
obtaining a de-identification solution, one 
must take into account that a globally 
optimal algorithm satisfies k-anonymity 
but at the same time minimizes 
information loss. A globally optimal 
solution prevents excessive information 
loss that would have led to inaccurate 
analysis results and inefficient use of data. 

In order to improve the performance of 
extracting tuples having the same quasi-
identifying values the following technical 
issues must be taken into consideration [17]:  
• To assure a reduced bandwidth usage and 

to minimize the redundant execution, a 

programmer must optimize the use of the 
on-chip memory. This memory is called 
shared memory, is software managed and 
along with a register file it represents the 
working memory within a group of cores. 
The shared memory has low latency and is 
partitioned among all the thread blocks 
that belong to the same streaming 
multiprocessor during the runtime. The 
inter-thread data can be reused because all 
data in the shared memory is shared 
among threads from the same thread 
block. Even if there is a small increase in 
the registers or shared memory usage per 
thread, the number of simultaneous 
executed threads diminishes greatly.  

• Using synchronization each thread can 
communicate only with other threads 
within the same thread block and there is 
no communication within threads from 
other blocks. Therefore, hardware 
resources do not have to be virtualized 
and so the hardware becomes highly 
scalable. The same program written in 
CUDA can be executed successfully on 
different generations of GPUs (for 
example one can use a GTX480 as well as 
a GTX280) but a single kernel call has a 
limited parallelism that can be applied.   

• Every GPU thread has its own private per 
thread memory, private registers, program 
counter and thread execution state. Each 
thread can execute an independent code 
path. The GPU processor executes and 
manages at hardware level hundreds of 
concurrent threads avoiding scheduling 
overhead and hiding memory latency. The 
Fermi architecture offers 512 execution 
cores; a GTX480 has 480 execution cores 
available for use. Hundreds of threads are 
needed for all these cores to be completely 
occupied. The high latency of global 
memory is also an important technical 
issue that must be taken into consideration 
when a programmer defines the threads in 
order to improve the software 
performance in CUDA. While CPU 
designs use large caches to hide memory 
latencies, CUDA generates and uses 
thousands of active threads. In contrast to 
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traditional multicore systems, 
programmers may have to define threads 
at a finer granularity in order to assure that 
there are a sufficient number of threads 
and that there is a high compute-to-
memory-access ratio in order to avoid 
saturation of memory channels. 

 
5.2 Experimental Results 
The data used for performance testing was 
exported from the AdventureWorks Sample 
Databases included in SQL Server 2008R2. 
The following configuration has been used: 
Intel i7-2600K at 3.4 GHz with 8 GB 
(2x4GB) of 1333 MHz DDR3, dual channel. 
The GPU used was GeForce GTX480 (from 
FERMI architecture). Programming and 
access to the GPUs used the CUDA toolkit 

3.2.16-64 bits with NVIDIA driver version 
266.58. In addition, all processes related to 
graphical user interface have been disabled to 
reduce the external traffic to the GPU. The 
benchmark took into consideration two 
stages. In the first one, the KNV1 and KNV2 
algorithms computed the k-anonymity 
coefficient, denoted by 𝑘01, respectively by 
𝑘02, corresponding to the data table and it is 
also computed and recorded the necessary 
amount of time for obtaining the result, using 
different number of treads per block. In this 
stage, we represented the effect of algorithm 
selection on execution time (measured in 
milliseconds) at different sizes of thread 
blocks (Figure 6). 

 

 
Fig. 6. The effect of algorithm selection on execution time at different sizes of thread blocks 

 
Analyzing Figure 6 one can observe that the 
execution time for obtaining the k-anonymity 
coefficient is less in the case of the KNV2 
algorithm than in the case of the KNV1 
algorithm. Even if the buffering causes an 
increasing of the execution time in parallel 
thread processing, this increase is amortized. 
Algorithm KNV2 uses a buffer zone to 
combine the memory bandwidth of all 
threads in a memory block to reduce the 
texture load. This implies a long execution 
time because only one block can be resident 
on a multiprocessor at a time during the 
loading phase and other processing cannot be 
done. As more threads are added to a block, 
the execution time for Algorithm KNV2 
decreases. This feature shows that Algorithm 

KNV2 is able to use the processing power of 
a large number of threads. As the number of 
threads increases, more results will be 
quickly calculated since all threads can 
access the shared memory block without 
additional resource consumption (until the 
moment when planning a large number of 
processes on the multiprocessor exceeds the 
total calculation time).  
In the second stage, the KNV1 and KNV2 
algorithms compute the necessary time for 
obtaining certain desired k-anonymity 
coefficients, denoted by 𝑘𝑖1 and 𝑘𝑖2, 𝑖 =
1,2,3… (using generalization and 
suppression techniques). In this stage, we 
represented the effect of k-anonymity 
coefficient’s selection on execution time 
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(measured in milliseconds) at different sizes 
of thread blocks for each of the algorithms. If 
the desired k-anonymity coefficient cannot 

be reached, the necessary time for reaching 
this conclusion is registered and represented 
(Figure 7, Figure 8). 

 

 
Fig. 7. The effect of k-anonymity coefficient’s selection on execution time at different sizes 

of thread blocks for KNV1 algorithm 
 

In Figure 7 there were represented four cases: 
the execution time for obtaining the k-
anonymity coefficient of the original table 
𝑘01 and execution times for obtaining 
another three increased levels of k-
anonymity, 𝑘01 + 5, 𝑘01 + 10, 𝑘01 + 15 in 
the case of the KNV1 algorithm. Analyzing 

the obtained results one can observe that the 
execution time for obtaining the k-anonymity 
coefficient increases with the desired k-
anonymity coefficient and the most 
significant increase is from 𝑘01to 𝑘11. The 
graphic shape is mostly the same in all four 
studied cases.  

 

 
Fig. 8. The effect of k-anonymity coefficient’s selection on execution time at different sizes 

of thread blocks for KNV2 algorithm 
 

In Figure 8 there were represented four cases: 
the execution time for obtaining the k-
anonymity coefficient of the original table 
𝑘02 and execution times for obtaining 
another three increased levels of k-
anonymity, 𝑘02 + 5, 𝑘02 + 10, 𝑘02 + 15 in 
the case of the KNV2 algorithm. Analyzing 
the obtained results one can observe that the 

execution time for obtaining the k-anonymity 
coefficient increases with the desired k-
anonymity coefficient and the most 
significant increase is from 𝑘02to 𝑘12. The 
graphic shape is mostly the same in all four 
studied cases. Comparing Figure 7 and 
Figure 8, one can observe that the execution 
time for obtaining the k-anonymity 



Economy Informatics, vol. 11, no. 1/2011 

 

58 

coefficient (and the increased levels of k-
anonymity) is less in the case of the KNV2 
algorithm than in the case of the KNV1 
algorithm. The increasing of the execution 
time in parallel thread processing caused by 
the buffering is amortized.  
 
6 Possible attacks against k-anonymity 
The k-anonymity has the potential to protect 
the identity and privacy of individuals 
referred to the data in question, but solutions 
that use the k-anonymity are still vulnerable 
to attacks even if the quasi-identifiers are 
very carefully chosen. We depict below three 
of the possible attacks and several methods to 
counter them [6]. 
1. The unsorted matching attack against the 
k-anonymity is based on the order of 
appearance of tuples in the released table, 
which can leak sensitive information if it is a 
related one. The solution against this problem 
is the randomly sort of tuples in the solution 
tables. 
2. The complementary release attack against 
k-anonymity is based on the fact that usually 
the quasi-identifiers are a subset of the 
released attributes and as a consequence 
when a table T is released, even if it respects 
the k-anonymity, one must take into account 
that it could contain other external 
information. Therefore, subsequent releases 
of the same privately held information must 
consider all the attributes that have been 
previously released in order to prohibit 
linking on T [6]. 
3. The temporal attack against the k-
anonymity is based on the dynamic nature of 
a data collection and on the fact that the 
tuples are frequently added, changed or 
removed. In this situation, releases of 
generalized data over time can be exposed to 
a temporal inference attack. We consider at a 
given moment of time an original private 
table T1 which leads to a solution based on 
the k-anonymity and a new table is released. 
We also consider another moment of time, 
when at the original table are added 
additional tuples, we denote this table by T2 
and then a k-anonymity solution based on 

this new table is released. Linking the 
released tables may reveal sensitive 
information and thereby compromise k-
anonymity protection. In order to prevent this 
problem, all of the attributes of the first 
released table would be used for subsequent 
releases. 
 
7 Conclusions 
In this paper, we have discussed the k-
anonymity concept and different approaches 
of its implementation. We formalized the 
main theoretical notions regarding the k-
anonymity and then we highlighted the 
application of the k-anonymity to the data 
mining process by developing a practical and 
intuitive example. We have developed, using 
the Compute Unified Device Architecture, an 
algorithm that analyzes k-anonymity and is 
suitable for extracting tuples with the same 
quasi-identifying values from a large 
database structured as a private table. The k-
anonymity has the potential to protect the 
identity and privacy of clients who use e-
services that employ data mining techniques.  
We have tried this novel approach because 
numerous e-services use data mining 
techniques and to our best knowledge, at this 
moment the scientific literature lacks in the 
aspect of ensuring the privacy of the 
disclosed data. Because the k-anonymous 
data mining is a recent research area, many 
research issues are still open and worth being 
investigated. A first example is the 
possibility of combining k-anonymity with 
other scientific fields that employ the data 
mining process. Another example is the 
development of new optimized algorithms 
used for obtaining k-anonymous tables, 
designed to process huge amounts of data by 
using the increased computational power of 
novel parallel processing architectures.   
We believe that developing and 
implementing a powerful solution for 
preserving the privacy of e-services that 
implement the data mining process is of a 
paramount importance, worth to be further 
developed.  
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