
Economy Informatics, vol. 11, no. 1/2011

45

The K-Anonymity Approach in Preserving the Privacy of E-Services
that Implement Data Mining

Ion LUNGU1, Alexandru PIRJAN2

1Economic Informatics Department, Academy of Economic Studies, Bucharest, Romania
2Romanian-American University, Bucharest, Romania

ion.lungu@ie.ase.ro, alex@pirjan.com

In this paper, we first described the concept of k-anonymity and different approaches of its
implementation, by formalizing the main theoretical notions. Afterwards, we have analyzed,
based on a practical example, how the k-anonymity approach applies to the data-mining
process in order to protect the identity and privacy of clients to whom the data refers. We
have presented the most important techniques and algorithms used in order to enforce k-
anonymity. We have studied possible approaches to ensure that k-anonymity preserves the
privacy of the data mining process in order to assure an efficient, safe and effective data
mining delivery as an e-service. We have depicted several software implementations that
employ k-anonymity. We have developed, using the Compute Unified Device Architecture, an
algorithm that analyzes k-anonymity and is suitable for extracting tuples with the same quasi-
identifying values from a large database structured as a private table.
Keywords: K-anonymity, Data mining, Compute Unified Device Architecture, Privacy,
Confidentiality

Introduction
Due to the tremendous evolution of the

information technology and the increasing
necessity for storage, access and analysis, the
field of knowledge discovery and data
mining emerged in the recent past. In
parallel, the Internet spreading provided a
platform where organizations conduct
commercial transactions, leading to the
development of e-commerce. After that, the
research and development in the field of e-
commerce led to the next evolutionary phase,
namely, e-service. As it is generally defined,
an e-service contains three main components:
the service provider, the service receiver and
the channels of service delivery that are
based on the information technology [1].
Usually, the main channel used for delivering
an e-service is the Internet, but channels such
as a call center, a telephone, a TV channel,
can also be taken into account when
delivering e-services to customers. Because
e-services involve a lot of personal data
exchange, privacy is one of the most
important challenges when implementing e-
services, because people who use such
services want to be sure that their personal
information is safe and will remain secure

and confidential. On one hand, these privacy
concerns might make the service provider
hesitant to offer online services and on the
other hand the service receiver might refuse
the usage of such services without having the
guarantee that his own data privacy is
secured.
Data mining in conjunction with business
intelligence applications interferes with the
e-services domain and becomes suitable for
being delivered as an e-service, mainly
because of the fact that several small to
medium range businesses are constrained by
the high costs required for setting up and
maintaining the infrastructure of support
technologies and business intelligence
software [2]. In order to assure an efficient,
safe and effective data mining delivery as an
e-service using the Internet, Web service
technologies are introduced to provide a
layer of abstraction above existing software
systems. The entire data mining e-service
model requires interaction and
communication between e-service agents and
clients, and between e-service providers and
e-service agents. These interactions need to
be implemented in a reliable, stable, scalable
and secure way and this is the reason why we

1

Economy Informatics, vol. 11, no. 1/2011

46

study in this paper a modern and novel
approach, the k-anonymity concept, used to
preserve the privacy in the data mining
process, including those e-services that
employ data mining.
In recent years, the information society, the
private and public organizations are facing an
exponential increase in the amount and
variety of daily collected data. In this
context, data mining techniques are
becoming increasingly important in assisting
the decision making process and in extracting
knowledge from large volumes of data in the
form of models, patterns and trends.
Although most of the time the results of the
data mining process do not explicitly contain
the original data stored in databases, these
results could still be used to deduce other
pieces of information contained in the
original data that were not intended for
release because it could affect the privacy of
people referred in the data. Data owners or
holders face difficult challenges to manage,
store, protect and release information without
compromising the privacy, confidentiality or
even national interests.
The data mining technology raised a serious
challenge for the researchers in the field:
combining the legitimate usage and sharing
of mined information while preserving the
privacy of individuals. Therefore, the
guaranteeing of proper protection of data is
of paramount importance taking into account
the risk of violating the privacy of
individuals to whom the stored information
refers. The collection of data that includes
personal information and its analysis requires
a high degree of privacy protection.
The techniques used for extracting
knowledge from databases must be designed
as to provide guarantees on the privacy of
individuals referred to the data in question. In
this context, the concept of privacy
preserving data mining has emerged, as a
response to these concerns [3]. The privacy
preserving data mining seeks to ensure a
compromise between the exchange of
information for data mining analysis and
keeping that information safely, in order to
protect the privacy of parties involved. In

order to preserve confidentiality, researchers
have proposed several approaches whose
techniques for protecting data are based on
modifying (masking or erasing) the original
sensitive data that should not be revealed [3].
The basic concepts of these approaches are
“loss of privacy” and “loss of information”.
The loss of privacy concept measures the
capacity of estimating the original data from
the modified data while the loss of
information concept measures the loss of
accuracy in the data [4]. If the level of
confidentiality regarding respondents to
which the data refers to is higher, the results
from the process of data mining are less
accurate and vice versa. Therefore, the main
purpose of these approaches is to provide
equilibrium between privacy and accuracy.
There are also other approaches to privacy
preserving data mining, like those
implementing cryptographic techniques to
prevent leaks of information [5] [6] [7]. The
main disadvantage of cryptography-based
techniques is that they usually require a lot of
processing power and consume a significant
amount of time. After establishing a clear
definition of privacy and after identifying the
information that is sensitive in the original
data and must be protected against
disclosure, one can choose privacy
preserving data mining techniques. In the
following we will address the notion of k-
anonymity [8] [9] [10] a recent approach
related to the privacy used for modeling the
protection of released data against possible
retrieval of private data from respondents to
which the data refers to. Recently introduced,
the notion of k-anonymous data mining is an
approach linked to ensuring the preservation
of privacy when data mining results are being
released. According to the basic principle of
k-anonymity, each released data must respect
the condition that every combination of
values, externally available, corresponding to
the released attributes, can be associated to a
minimum number of k respondents.

2 The k-anonymity
As mentioned before, the notion of k-
anonymity [8] [9] [10] highlights the

Economy Informatics, vol. 11, no. 1/2011

47

protection of released data, as a consequence
of the data mining process, against possible
retrieval of private data from respondents to
which the data refers to. We first briefly
depict the main theoretical notions that we
will use later when we illustrate the k-
anonymity approach by a series of examples.
A detailed discussion of these notions and
concepts is presented in [6].
Definition 1. For a relational table
𝐵(𝐴1, … ,𝐴𝑛) with a finite number of tuples,
the finite set of attributes of 𝐵 is {𝐴1, … ,𝐴𝑛}.
For a table 𝐵(𝐴1, … ,𝐴𝑛) if we consider a
subset of the set of attributes,
{𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛} and a tuple 𝑡 ∈ 𝐵,
we will denote the sequence of
values 𝑣𝑖, … ,𝑣𝑗 of 𝐴𝑖 , … ,𝐴𝑗 in 𝑡 by
𝑡[𝐴𝑖, … ,𝐴𝑗] and the projection of attributes
𝐴𝑖, … ,𝐴𝑗 in 𝐵 (maintaining duplicate tuples),
by𝐵[𝐴𝑖, … ,𝐴𝑗]. We will assume that each
tuple is specific to one person and every
person appears only in one tuple. In order to
protect the data and limit the ability to link
released information to other external data,
the data holder must identify all the attributes
that contain private information and could be
used to link with external information about
this person. These attributes include private
data and explicit identifiers such as name,
address and others, or they may include
attributes whose combination could help to
certainly identify a person, such as birth date
and gender. Dalenius [11] named these
attributes quasi-identifiers. Person specific
data has to be released such that the quasi-
identifier does not link to other information
that could affect the privacy of the persons in
question.
Definition 2. If 𝑈 is a population of entities,
𝑇(𝐴1, … ,𝐴𝑛) an entity specific table,
𝑓𝑐 :𝑈 → 𝑇and 𝑓𝑔:𝑇 → 𝑈′, where 𝑈 ⊆ 𝑈′, a
quasi-identifier of 𝑇, 𝑄𝑇is a set of attributes
{𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛} ie ∃𝛼𝑖 ∈ 𝑈 such
that 𝑓𝑔(𝑓𝑐(𝛼𝑖)[𝑄𝑇]) = 𝛼𝑖.
Attributes that appear both in private and
public data are suitable candidates for linking
and constitute the quasi-identifier, an
important reason to control their disclosure.
Usually, the data holder can easily identify

these attributes. But what happens if the data
holder does not correctly identify the
sensitive attributes for linking? In this case, it
is possible for the individuals to be easily
identified as the released data becomes less
anonymous. Many approaches in the
literature try to solve the conflict between
disclosure risk and information loss [9], [6].
A protected dataset satisfies the k-anonymity
requirements if for every combination of
quasi-identifiers there are at least k records
that share the same combination in the
dataset. When k-anonymity reaches the
desired level of protection, minimizing
information loss becomes the next concern.
Definition 3. If 𝑇(𝐴1, … ,𝐴𝑛) is a table and
𝑄𝐼𝑇 its associated quasi-identifier, 𝑇 is said
to satisfy the k-anonymity if and only if each
sequence of values in 𝑇[𝑄𝐼𝑇] appears at least
k times in 𝑇[𝑄𝐼𝑇].
Lemma. If 𝑇(𝐴1, … ,𝐴𝑛) is a table and
𝑄𝐼𝑇 = (𝐴𝑖, … ,𝐴𝑗) its associated
quasi-identifier, {𝐴𝑖 , … ,𝐴𝑗} ⊆ {𝐴1, … ,𝐴𝑛},
and 𝑇 satisfies the k-anonymity, then each
sequence of values in 𝑇[𝐴𝑥] appears at least
k times in 𝑇[𝑄𝐼𝑇], for 𝑥 = 𝑖, … , 𝑗.
In the following, we will illustrate the k-
anonymity by a series of examples. We will
first consider a private table PT, where
explicit identifiers of persons (such as the
name, the ID, the address) to which the
stored data refers to, were removed. On the
other hand, a number of values of other
attributes (such as birth date, zip code,
gender, marital status, etc.) can appear in
some external tables jointly with the
respondents’ identities. If certain
combinations of values of these attributes are
unique or rare, then it is possible that people
who have access to such data, can identify
the respondent to which the data refers to or
can select a small group of persons having a
common set of characteristics, group in
which the person in question belongs to.
Based on the k-anonymity requirements,
each tuple in the private table may be
indistinguishably linked to at least k
respondents. In order to protect the identity
and anonymity of individuals whose data are
involved and to make the identification of

Economy Informatics, vol. 11, no. 1/2011

48

these people more difficult by a potential
attacker, k-anonymity requires that if a
combination of values of a set of attributes
(called quasi-identifying attributes) appears
in the table, then this combination must
appear at least k times [4].
The private table chosen to illustrate the k-
anonymity contains a series of attributes and
among them, the education level of the

person, his/her sex, the age of the person and
also an information related to the fact that the
person wears or not glasses. The quasi-
identifier is constituted from attributes
„Education_level”, „Sex” and „Age”. In
Table1, one can observe a simplified
representation of the private table,
highlighted through the quasi-identifier.

Table 1. A simplified representation of a private table

Education_level Sex Age Tuples Glasses
Bachelor M 32 20 10Y;10N

MA F 40 7 2Y;5N
PhD M 42 2 0Y;2N

Baccalaureate F 36 8 3Y;5N
PhD F 45 2 2Y;0N

Gymnasium M 31 15 6Y;9N

In this representation, tuples with the same
quasi-identifying values were represented in
the table as a single tuple. On the right side
of Table 1, on each row, is placed
information regarding the number of tuples
with common characteristics and the number
of those people who wear or not glasses.
Possible values of this attribute are denoted
by Y (yes), corresponding to cases in which a
person wears glasses and N (no), if that
person does not wear glasses. In the table,
there are only two occurrences of males
being 42 years old and a PhD degree. As a
consequence of these two occurrences, the k-
anonymity degree for preserving the privacy
in the private table PT in Table 1 is very
poor, being k=2 or less. If there is another
linked external table that contains other
supplementary attributes, referring to
respondents from the PT table, the identity of
respondents can be reduced to one of the two
people having these common features.
One can observe that if a tuple has k
occurrences, then any of its sub-tuples must
have at least k occurrences, which leads to
the following conclusion: a condition for
having k occurrences of a tuple is that there
are k occurrences of any sub-tuple. This
condition is necessary but not sufficient. In
our example, if we consider the k-anonymity
over the quasi-identifier {Education_level,

Sex and Age}, it requires that each value of
individual attributes appears at least k times
and the same condition is available for any
sub-tuple corresponding to a combination of
them. Referring to our example, one can
observe that there are only two tuples
referring to males having a PhD degree and
as a consequence we can certainly say that
the table will not satisfy the k-anonymity for
k>2 because after adding the attribute “Age”,
these occurrences will remain two or less. In
order to enforce the k-anonymity on such a
private table, two main techniques with the
property of preserving the truthfulness of the
data have been proposed: the generalization
and the suppression techniques, which we
will depict in the following.
The first technique, the generalization, is
based on replacing each attribute with a more
general version of it, taking into account a
domain generalization hierarchy and the
associated generalization hierarchy of values,
over the values in the domains. In Figure 1
we represent an example of the domain and
value generalization hierarchies, based on the
quasi-identifying attributes used in our
example. The generalization can be applied
at two levels: at a single cell level, if it is
substituted the cell value with a generalized
version of it or at the attribute level, if all the
cells in the corresponding column are

Economy Informatics, vol. 11, no. 1/2011

49

generalized. All the values, which differ in
the private table, can be easily generalized to
the same value and for this value, the number
of occurrences is the sum of all occurrences

of the values from which the generalization
comes. In this way, the generalization
enforces the k-anonymity.

Fig. 1. An example of the domain and value generalization hierarchies

The second technique used for enforcing the
k-anonymity on a private table is the
suppression technique, which is based on
removing sensitive information in order to
protect it and is applicable for a single cell,
for an entire tuple or for an entire column.
The suppression method consists in removing
from the table information that forces a large
amount of generalization to satisfy a k-
anonymity constraint. Therefore, the k-
anonymity is satisfied but with less
generalization and with a reduced loss of
information.

3 Algorithms for enforcing k-anonymity
If the generalization and suppression
techniques are applied over a private table,
the obtained tables will provide an improved
protection of the respondents’ identity but the
information will be less precise due to the
generalization and less complete because
some values are suppressed. Therefore, an
information loss occurs (both in precision
and in completeness) and it is very important
to maintain the information loss under
control and minimize it.

In the literature, there are many proposed
definitions of minimality and studies about
the process of finding minimal k-anonymous
tables using the attribute generalization and
tuple suppression techniques, highlighting
that these problems are hard to compute [4]
[12] [13]. In order to select the optimal
solution, different criteria can be applied to
all the tables that ensure minimal information
loss and satisfy the definition of minimality.
This aspect is of paramount importance in
data mining where the usefulness of the data
has a great impact over the whole process. In
the following, we will present the most
important existing algorithms used for
obtaining k-anonymous tables.

3.1 The Samarati’s algorithm
The Samarati’s algorithm is based on the
generalization over quasi-identifier attributes
combined with the tuple suppression and its
main goal is to suppress less tuples by
finding a
k-minimal generalization [9]. As mentioned
before, the generalization technique is based
on the domain and value generalization

Economy Informatics, vol. 11, no. 1/2011

50

hierarchies and in this case, the definition of
the domain generalization hierarchy is
extended at tuples of domains, based on the
fact that the algorithm operates on a set of
attributes. In order to obtain the domain

generalization hierarchy of a domain tuple,
the involved attributes corresponding to the
domain tuple must be generalized and some
of the tuples must be suppressed for
satisfying the k-anonymity constraint.

Fig. 2. An example of a domain generalization hierarchy

In Figure 2 it is presented an example of a
domain generalization hierarchy obtained by
using two quasi-identifying attributes,
“Education_level” and “Sex” which have
been depicted in Figure 1. The domain tuple
is, in this case, <E0, S0>. By generalizing the
original private table in accordance with a
generalization strategy one can obtain
different paths of the hierarchy located at
different levels. The algorithm has to
compute a generalization that satisfies k-
anonymity within the MAX constraint, a
threshold that must be specified, representing
the maximum number of suppressible tuples.
The algorithm evaluates all the solutions at a
specific level of the hierarchy starting with
the Level 0, and if there isn’t any k-
anonymous table that satisfies the MAX
threshold, it passes to the next superior level
and repeats the procedure until it finds the
lowest level where there is a solution that
satisfies the k-anonymity constraint.
In our example, the quasi-identifying
attributes as shown in Table 1 are
“Education_level” and “Sex”, the domain
and value generalization hierarchy are
depicted in Figure 1, and the generalization
hierarchy is represented in Figure 2. If we
choose k=4 and the threshold MAX=1, the
algorithm starts the verification of solutions
at the Level 0. The solution <E0, S0>
corresponds to the original table; it is not 4-
anonymous and does not satisfy the MAX
constraint since the 4-anonymity requires the
suppression of the two tuples Ph.D, M. The

algorithm verifies the solutions at Level 1,
<E0, S1>and <E1, S0> and one can observe
that only the solution <E0,S1> is 4-
anonymous within the MAX constraint.
Therefore, this is the lowest level that has a
solution satisfying the k-anonymity
constraint and this solution <E0, S1>is
considered as minimal.

3.2 The k-Optimizealgorithm
Another algorithm for generalization over
quasi-identifier attributes and tuple
suppression is called k-Optimize, proposed
by Bayardo and Agrawal [14]. For a private
table PT and an ordered set of quasi-
identifying attributes 𝑄𝐼 = {𝐴1, … ,𝐴𝑛}, the
k-Optimize algorithm assumes that each
attribute 𝐴𝑖 ∈ 𝑄𝐼 is defined over a totally
ordered domain denoted by 𝐷𝑖. If 𝐴 is an
attribute, its generalization on domain 𝐷 is
obtained by partitioning 𝐷 into a set of
ordered intervals {𝐼1, … , 𝐼𝑚} with 𝐷 = ⋃ 𝐼𝑖𝑚

𝑖=1
and for every elements 𝑣𝑖 ∈ 𝐼𝑖and 𝑣𝑗 ∈ 𝐼𝑗, if
𝑖 < 𝑗 then 𝑣𝑖 < 𝑣𝑗. For each interval in any
domain of the quasi-identifying attributes,
the approach associates an integer called
index whose assignment reflects on one hand
the total order relationship over intervals in
the domains and on the other hand the total
order relationship among the quasi-
identifying attributes [14].
Using the same example as in Table 1, in this
private table the quasi-identifying attribute is
“Education_level” and the order among

Economy Informatics, vol. 11, no. 1/2011

51

values inside this attribute is “Gymnasium”,
“Baccalaureate”, “Bachelor”, “MA”, “PhD”.
In Figure 3 is depicted the index assignment

obtained without the applying of any
generalization and considering that each
attribute value is represented by an interval.

Fig. 3. An example of Index assignment to attributes „Education_level”

Taking into account all possible subsets of
the set 𝐼 of index values, without
duplications, the k-Optimize algorithm
constructs a set enumeration tree over the set
𝐼. For a node 𝑛, children are obtained through
all the sets that contain the elements in 𝑛 and

another single element of the set 𝐼 appended
to 𝑛, in accord with the previously defined
total order. In Figure 4 is illustrated an
example of a set enumeration tree over the
set of indexes 𝐼 = {1,2,3,4,5} .

Fig. 4. An example of set enumeration tree over the set 𝐼 = {1, 2, 3,4,5}of indexes

Each node in the tree depicts possible options
of generalization for the original table PT and
therefore the set enumeration tree helps to
evaluate and select solutions for the k-
anonymity problem. The null node represents
the root of the node and by appending one
item, which is lexicographically larger than
the other items at that particular node of the
tree, a new level of the tree is constructed.
Therefore, the data’s dimension influences
significantly the number of possible nodes in
the tree, the increasing being exponentially
and even for small values of 𝑛 it is difficult
to build the entire tree.
In order to eliminate this inconvenient, the k-
Optimize algorithm uses a pruning strategy
based on which a node of the tree is
eliminated when no descendent of it can
satisfy the k-anonymity requirements. When
the maximum computational time has been
reached, the algorithm can be stopped and

the solution from that point can be used. This
technique usually provides satisfactory
results but it is possible for it not to be
optimal.

4 Related works: software packages that
implement certain levels of k-anonymity
In the following, we will depict several
software implementations that employ the
k-anonymity concept.
One of the most useful implementations is
related to a globally optimal k-anonymity
method for the de-identification of health
data [15], through a globally optimal de-
identification algorithm (Optimal Lattice
Anonymization) that satisfies the k-
anonymity criterion and is suitable for health
datasets. It is also presented a comparison
between this algorithm and another three
existing k-anonymity algorithms (Datafly,
Samarati and Incognito) on six public health

Economy Informatics, vol. 11, no. 1/2011

52

registry datasets for different values of k and
suppression limits. In order to compare these
algorithms three information loss metrics
have been used: precision, discernibility
metric and non-uniform entropy. Each
algorithm’s performance speed was also
evaluated. The conclusion of this study is
that for the de-identification of health
datasets, Optimal Lattice Anonymization is
an improvement on existing k-anonymity
algorithms, offering less information loss and
faster performance compared to current de-
identification algorithms. The Optimal
Lattice Anonymization algorithm assumes
that the dataset has more than k records and
the objective of the algorithm is to find the
optimal node in the generalization tree. A
node is considered to be optimal if it is k-
anonymous and has minimal information
loss. The main three steps of the Optimal
Lattice Anonymization algorithm are:
• A binary search is used for each

generalization strategy to find all the k-
anonymous nodes.

• The algorithm retains the k-anonymous
node with the lowest height within the
strategy for each generalization strategy.

• After the algorithm has selected the k-
minimal nodes, it chooses the node with
the smallest information loss as the
globally optimal solution. Based on a
monotonicity property, the k-minimal
node with the smallest information loss
must also have the smallest information
loss among all k-anonymous nodes in the
tree.

Another software implementation of the k-
anonymity concept is the Datafly algorithm
[8]. In order to find a k-anonymous dataset a
heuristic method is used. From all the
possible quasi-identifiers, the algorithm
selects the one with the most distinct values
and generalizes it. The algorithm stops if the
output generalized dataset is k-anonymous.
In the following, we will depict the Incognito
algorithm [8]. First, it starts by considering
all possible subsets of the quasi-identifiers,
using two optimization techniques:
• When evaluating nodes in the

generalization tree, the algorithm tags as

k-anonymous the nodes that are above k-
anonymous ones in the same
generalization strategies.

• If a node is not k-anonymous in a smaller
quasi-identifier subset, then, by definition,
it will not be k-anonymous in a larger
subset of the quasi-identifiers and
consequently the lattices for larger subsets
of quasi-identifiers can be pruned.

After that, the algorithm evaluates the nodes
by starting with a bottom up strategy and by
tagging the generalizations of k-anonymous
nodes that are found. The main advantage of
this approach is a significant reduction in the
number of nodes that need to be evaluated.
The node with the lowest information loss
value is selected as being the optimal
solution. There are multiple versions of
Incognito.
An interesting application of the k-anonymity
concept is the k-anonymous message
transmission [16], meaning simple and
efficient protocols that are k-anonymous for
both the sender and the receiver. In order for
a communication protocol to be considered
sender k-anonymous, it must assure that an
adversary who tries to determine the identity
of a particular message’s sender can only
narrow its search to a certain set of k
suspects. A similar guarantee must be
assured in what concerns the receiver in
order to be considered receiver k-
anonymous. In [16] there are presented a
series of protocols that are k-anonymous for
both the sender and the receiver in a
described model where a polynomial time
adversary is able to see all the traffic within a
network and control a constant fraction of the
participants. The protocol does not require
the existence of trusted third parties and adds
robustness against adversaries who try to
disrupt the protocol through perpetual
transmission or selective non-participation.

5 The Compute Unified Device
Architecture approach for the k-
anonymity concept
Graphics Processing Units have been used
for a long time solely to accelerate graphics
rendering on computers [17]. In order to

Economy Informatics, vol. 11, no. 1/2011

53

satisfy the increasing need for improved
three-dimensional rendering at a high
resolution and a large number of frames per
second, the GPU has evolved from a one-
purpose specialized architecture to multiple
purposes complex architectures, able to do
much more than just provide video rendering.

The acceleration of a broad class of
applications became possible once with the
introduction of the NVIDIA Compute
Unified Device Architecture. The
architecture and the main characteristics of
the NVIDIA GPUs are summarized in Figure
5.

Fig. 5. NVIDIA Compute Unified Device Architecture (CUDA)[17]

CUDA is a software and hardware
architecture that enables the NVIDIA
graphics processor to execute programs
written in C, C++, FORTRAN, OpenCL,
Direct Compute and other languages. A
CUDA program invokes more parallel
program kernels. The kernel processes in
parallel each set of parallel threads. The
programmer or compiler manages these
threads by grouping them into thread blocks
(consisting of more threads) and grids of
thread blocks (consisting of more thread
blocks).
The GPU processor instantiates a kernel
program on a grid containing parallel thread
blocks. Each thread from the block executes
an instance of the kernel and has a unique ID
associated to registers, to thread’s private
memory within the thread block [17].
The Compute Unified Device Architecture
hierarchy of threads is mapped to the
hierarchy of the graphics processing units’
hardware processor; a GPU executes one or
more kernel grids; a streaming
multiprocessor (SM) executes one or more
thread blocks; the CUDA cores contained in
the streaming multiprocessor SM run the
threads within blocks. A streaming

multiprocessor SM can process up to 32
groups of threads called warps. Regarding
memory hierarchy, each multiprocessor
contains a set of 32-bit registry with a zone
of shared memory, which is easily accessible
for each core of the multiprocessor but
hidden from other
multi-processors. Depending on the
generation of a GPU, the number of registry
and the size of shared memory vary. Besides
shared memory, a multiprocessor contains
two read - only memory caches, one for
texture and another one for constants.
In order to improve software performance
when programming in CUDA, developers
have to optimize the number of concomitant
active threads and balance each thread’s
resources: number of registers and threads
per multiprocessor, global memory
bandwidth and the amount of on-chip
memory assigned per thread. Performance
increases have been obtained by reordering
accesses to off-chip memory in order to
manage requests referring to the same
memory locations (or contiguous memory
locations). By applying these techniques,
many applications improved their execution
time up to 457X in kernel codes and 431X at

Economy Informatics, vol. 11, no. 1/2011

54

a general level [17].
In the NVIDIA CUDA programming model
[17]a system is comprised of a traditional
CPU (representing the host) and one or more
massively data-parallel coprocessors
(representing the devices). The CUDA
runtime has library functions for managing
both the device memory and transfers from
the host to the compute devices.
All concurrent threads are based on the same
code even if they may follow different paths
of execution because each CUDA device
processor supports the Single-Program
Multiple Data (SPMD) model [17] and each
thread resides in the same global address
space. Data parallel functions, called kernels
and data structures, corresponding to the
compute devices, comply with standard
ANSI C extended with keywords. A kernel is
usually invoked on thousands of threads and
describes the work of a single one. Inside
thread blocks, through built-in primitives,
threads synchronize their actions and share
their data. The CUDA programming model
enables a program’s components, which are
suited for data parallelism, to be separated
and executed on a specialized massive data
parallelism coprocessor. A detailed overview
on the CUDA programming model is
depicted in [17].This architecture offers a
high degree of flexibility when it comes
about allocating local resources like registers
or local memory in threads. The programmer
divides local resources among threads and
every CUDA core can process a variable
number of threads. Although this flexibility
offers a high degree of control over an
application performance, it also has a great
impact on optimizing the performance of
applications. Another important aspect is
related to the way GeForce GTX480 can
execute applications and what are the
elements that improve or limit its
performance. Numerous software
applications were ported and evaluated on
the CUDA platform as a result of its huge
data processing power [17].

5.1 The algorithm’s description
Using the Compute Unified Device

Architecture, we have developed an
algorithm that analyzes the k-anonymity
approach and is suitable for extracting tuples
with the same quasi-identifying values from
a large database structured as a private table.
The number of tuples with the same quasi-
identifying values in a private table is
important when evaluating the k-anonymity
level and selecting possible options for
suppression or generalization in order to
obtain a desired level of k-anonymity. We
took into consideration the main aspects of
improving a CUDA application performance
and GPU memory management through a
sequence of progressively optimized kernels.
The algorithm has been developed in two
versions.
In the first version, denoted KNV1, threads
within each thread block access data by using
the texture memory, starting at different
positions within the database while threads
with the same ID from different blocks are
starting from the same position.
The second version of the algorithm, denoted
KNV2, uses block-level parallelism with
shared memory database buffering. Instead
of using the texture memory, this version
loads a block of data from the database into a
buffer of shared memory, processes data
from the buffer, then loads another block of
data in the buffer and the process is repeated
until the entire database has been processed.
The starting point for each thread of KNV2
depends on buffer size and not on the size of
the database (as in KNV1). A thread will
always access the same shared memory area
during all searches, but data from the shared
memory will change when buffer updates.
In the following, we will define four
important requirements that were taken into
account when we have designed the
algorithm that analyses the k-anonymity
approach and is suitable for extracting tuples
with the same quasi-identifying values from
a large database structured as a private table.
These requirements represent a minimal
necessary set and if they are not met then the
de-identified data (obtained in order to k-
anonymize the database) might become
useless. The requirements are based on the

Economy Informatics, vol. 11, no. 1/2011

55

available documentation [15] in this domain
and were of paramount importance in
developing the algorithm.
• The values in the quasi-identifiers are

generalized by reducing their precision
and, therefore, the quasi-identifiers are
represented as hierarchies and a de-
identification algorithm needs to deal with
this hierarchical nature of the variables.

• For all values of a given quasi-identifier a
total order relationship is presumed and a
quasi-identifier can be recorded to any
partition of the values that preserves the
order. The users of the data need to
specify the interval sizes that are
appropriate for the analysis that they will
perform. Otherwise, if this partitioning is
performed automatically, it may produce
intervals of unequal sizes that are a
disadvantage because it makes the
analysis of such data quite complex and
significantly reduces its utility.

• A very practical approach is to use global
recording where all the records have the
same recording within each variable, i.e.
to use global recording instead of local
recording. If the k-anonymity algorithm
used the local recording, the
generalizations performed on the quasi-
identifiers are not consistent across all of
the records and such inconsistency in
constructing response categories makes
the data very difficult to analyze in
practice using standard data analysis
techniques.

• When designing an algorithm for
obtaining a de-identification solution, one
must take into account that a globally
optimal algorithm satisfies k-anonymity
but at the same time minimizes
information loss. A globally optimal
solution prevents excessive information
loss that would have led to inaccurate
analysis results and inefficient use of data.

In order to improve the performance of
extracting tuples having the same quasi-
identifying values the following technical
issues must be taken into consideration [17]:
• To assure a reduced bandwidth usage and

to minimize the redundant execution, a

programmer must optimize the use of the
on-chip memory. This memory is called
shared memory, is software managed and
along with a register file it represents the
working memory within a group of cores.
The shared memory has low latency and is
partitioned among all the thread blocks
that belong to the same streaming
multiprocessor during the runtime. The
inter-thread data can be reused because all
data in the shared memory is shared
among threads from the same thread
block. Even if there is a small increase in
the registers or shared memory usage per
thread, the number of simultaneous
executed threads diminishes greatly.

• Using synchronization each thread can
communicate only with other threads
within the same thread block and there is
no communication within threads from
other blocks. Therefore, hardware
resources do not have to be virtualized
and so the hardware becomes highly
scalable. The same program written in
CUDA can be executed successfully on
different generations of GPUs (for
example one can use a GTX480 as well as
a GTX280) but a single kernel call has a
limited parallelism that can be applied.

• Every GPU thread has its own private per
thread memory, private registers, program
counter and thread execution state. Each
thread can execute an independent code
path. The GPU processor executes and
manages at hardware level hundreds of
concurrent threads avoiding scheduling
overhead and hiding memory latency. The
Fermi architecture offers 512 execution
cores; a GTX480 has 480 execution cores
available for use. Hundreds of threads are
needed for all these cores to be completely
occupied. The high latency of global
memory is also an important technical
issue that must be taken into consideration
when a programmer defines the threads in
order to improve the software
performance in CUDA. While CPU
designs use large caches to hide memory
latencies, CUDA generates and uses
thousands of active threads. In contrast to

Economy Informatics, vol. 11, no. 1/2011

56

traditional multicore systems,
programmers may have to define threads
at a finer granularity in order to assure that
there are a sufficient number of threads
and that there is a high compute-to-
memory-access ratio in order to avoid
saturation of memory channels.

5.2 Experimental Results
The data used for performance testing was
exported from the AdventureWorks Sample
Databases included in SQL Server 2008R2.
The following configuration has been used:
Intel i7-2600K at 3.4 GHz with 8 GB
(2x4GB) of 1333 MHz DDR3, dual channel.
The GPU used was GeForce GTX480 (from
FERMI architecture). Programming and
access to the GPUs used the CUDA toolkit

3.2.16-64 bits with NVIDIA driver version
266.58. In addition, all processes related to
graphical user interface have been disabled to
reduce the external traffic to the GPU. The
benchmark took into consideration two
stages. In the first one, the KNV1 and KNV2
algorithms computed the k-anonymity
coefficient, denoted by 𝑘01, respectively by
𝑘02, corresponding to the data table and it is
also computed and recorded the necessary
amount of time for obtaining the result, using
different number of treads per block. In this
stage, we represented the effect of algorithm
selection on execution time (measured in
milliseconds) at different sizes of thread
blocks (Figure 6).

Fig. 6. The effect of algorithm selection on execution time at different sizes of thread blocks

Analyzing Figure 6 one can observe that the
execution time for obtaining the k-anonymity
coefficient is less in the case of the KNV2
algorithm than in the case of the KNV1
algorithm. Even if the buffering causes an
increasing of the execution time in parallel
thread processing, this increase is amortized.
Algorithm KNV2 uses a buffer zone to
combine the memory bandwidth of all
threads in a memory block to reduce the
texture load. This implies a long execution
time because only one block can be resident
on a multiprocessor at a time during the
loading phase and other processing cannot be
done. As more threads are added to a block,
the execution time for Algorithm KNV2
decreases. This feature shows that Algorithm

KNV2 is able to use the processing power of
a large number of threads. As the number of
threads increases, more results will be
quickly calculated since all threads can
access the shared memory block without
additional resource consumption (until the
moment when planning a large number of
processes on the multiprocessor exceeds the
total calculation time).
In the second stage, the KNV1 and KNV2
algorithms compute the necessary time for
obtaining certain desired k-anonymity
coefficients, denoted by 𝑘𝑖1 and 𝑘𝑖2, 𝑖 =
1,2,3… (using generalization and
suppression techniques). In this stage, we
represented the effect of k-anonymity
coefficient’s selection on execution time

Economy Informatics, vol. 11, no. 1/2011

57

(measured in milliseconds) at different sizes
of thread blocks for each of the algorithms. If
the desired k-anonymity coefficient cannot

be reached, the necessary time for reaching
this conclusion is registered and represented
(Figure 7, Figure 8).

Fig. 7. The effect of k-anonymity coefficient’s selection on execution time at different sizes

of thread blocks for KNV1 algorithm

In Figure 7 there were represented four cases:
the execution time for obtaining the k-
anonymity coefficient of the original table
𝑘01 and execution times for obtaining
another three increased levels of k-
anonymity, 𝑘01 + 5, 𝑘01 + 10, 𝑘01 + 15 in
the case of the KNV1 algorithm. Analyzing

the obtained results one can observe that the
execution time for obtaining the k-anonymity
coefficient increases with the desired k-
anonymity coefficient and the most
significant increase is from 𝑘01to 𝑘11. The
graphic shape is mostly the same in all four
studied cases.

Fig. 8. The effect of k-anonymity coefficient’s selection on execution time at different sizes

of thread blocks for KNV2 algorithm

In Figure 8 there were represented four cases:
the execution time for obtaining the k-
anonymity coefficient of the original table
𝑘02 and execution times for obtaining
another three increased levels of k-
anonymity, 𝑘02 + 5, 𝑘02 + 10, 𝑘02 + 15 in
the case of the KNV2 algorithm. Analyzing
the obtained results one can observe that the

execution time for obtaining the k-anonymity
coefficient increases with the desired k-
anonymity coefficient and the most
significant increase is from 𝑘02to 𝑘12. The
graphic shape is mostly the same in all four
studied cases. Comparing Figure 7 and
Figure 8, one can observe that the execution
time for obtaining the k-anonymity

Economy Informatics, vol. 11, no. 1/2011

58

coefficient (and the increased levels of k-
anonymity) is less in the case of the KNV2
algorithm than in the case of the KNV1
algorithm. The increasing of the execution
time in parallel thread processing caused by
the buffering is amortized.

6 Possible attacks against k-anonymity
The k-anonymity has the potential to protect
the identity and privacy of individuals
referred to the data in question, but solutions
that use the k-anonymity are still vulnerable
to attacks even if the quasi-identifiers are
very carefully chosen. We depict below three
of the possible attacks and several methods to
counter them [6].
1. The unsorted matching attack against the
k-anonymity is based on the order of
appearance of tuples in the released table,
which can leak sensitive information if it is a
related one. The solution against this problem
is the randomly sort of tuples in the solution
tables.
2. The complementary release attack against
k-anonymity is based on the fact that usually
the quasi-identifiers are a subset of the
released attributes and as a consequence
when a table T is released, even if it respects
the k-anonymity, one must take into account
that it could contain other external
information. Therefore, subsequent releases
of the same privately held information must
consider all the attributes that have been
previously released in order to prohibit
linking on T [6].
3. The temporal attack against the k-
anonymity is based on the dynamic nature of
a data collection and on the fact that the
tuples are frequently added, changed or
removed. In this situation, releases of
generalized data over time can be exposed to
a temporal inference attack. We consider at a
given moment of time an original private
table T1 which leads to a solution based on
the k-anonymity and a new table is released.
We also consider another moment of time,
when at the original table are added
additional tuples, we denote this table by T2
and then a k-anonymity solution based on

this new table is released. Linking the
released tables may reveal sensitive
information and thereby compromise k-
anonymity protection. In order to prevent this
problem, all of the attributes of the first
released table would be used for subsequent
releases.

7 Conclusions
In this paper, we have discussed the k-
anonymity concept and different approaches
of its implementation. We formalized the
main theoretical notions regarding the k-
anonymity and then we highlighted the
application of the k-anonymity to the data
mining process by developing a practical and
intuitive example. We have developed, using
the Compute Unified Device Architecture, an
algorithm that analyzes k-anonymity and is
suitable for extracting tuples with the same
quasi-identifying values from a large
database structured as a private table. The k-
anonymity has the potential to protect the
identity and privacy of clients who use e-
services that employ data mining techniques.
We have tried this novel approach because
numerous e-services use data mining
techniques and to our best knowledge, at this
moment the scientific literature lacks in the
aspect of ensuring the privacy of the
disclosed data. Because the k-anonymous
data mining is a recent research area, many
research issues are still open and worth being
investigated. A first example is the
possibility of combining k-anonymity with
other scientific fields that employ the data
mining process. Another example is the
development of new optimized algorithms
used for obtaining k-anonymous tables,
designed to process huge amounts of data by
using the increased computational power of
novel parallel processing architectures.
We believe that developing and
implementing a powerful solution for
preserving the privacy of e-services that
implement the data mining process is of a
paramount importance, worth to be further
developed.

Economy Informatics, vol. 11, no. 1/2011

59

References
[1] A. Buchmann, F. Casati, L. Fiege, M.C.

Hsu, M.C. Shan, (Eds.), “Technologies
for E-Services”, in Proc. Third
International Workshop, TES 2002, Vol.
2444, Hong Kong, China, 2002, pp. 175-
233.

[2] S. Krishnaswamy, A. Zaslavsky, S.
W.Loke, “Internet Delivery of
Distributed Data Mining Services:
Architectures, Issues and Prospects”,
Chapter 7 in the book Architectural
Issues of Web-enabled Electronic
Business, Murthy, V.K. and Shi, N.
(eds.), Idea Group Publishing, 2003, pp.
113 - 127.

[3] R. Agrawal, R. Srikant, “Privacy-
preserving data mining”, in Proc. of the
ACM SIGMOD Conference on
Management of Data, Dallas, Texas,
May 2000, pp.439-450.

[4] C.C. Aggarwal, P. S. Yu, Privacy-
Preserving Data Mining, Models and
Algorithms, Series: Advances in
Database Systems, Springer, Vol. 34, pp.
105-134, 2008.

[4] Y. Lindell, B. Pinkas, “Privacy
preserving data mining”, Journal of
Cryptology, vol.15, no.3, pp. 177–206,
June 2002.

[5] L. Sweeney, K-anonymity: A model for
protecting privacy, International Journal
on Uncertainty, Fuzziness and
Knowledge-based Systems, vol. 10, no.
5, pp. 557-570, 2002.

[6] Z. Yang, S. Zhong, R. N. Wright,
“Privacy preserving classification of
customer data without loss of accuracy”,
in Proc. of the 5th SIAM International
Conference on Data Mining, Newport
Beach, California, April 2005, pp.560-
567.

[7] V. Ciriani, S. De Capitani di Vimercati,
S. Foresti, P. Samarati, “K-anonymity”,
in T. Yu and S. Jajodia, editors, Security
in Decentralized Data Management,
Springer, Berlin Heidelberg, 2007, pp.
323-353.

[8] P. Samarati, “Protecting respondents’
identities in microdata release”, IEEE

Transactions on Knowledge and Data
Engineering, vol. 13, no. 8, pp:1010–
1027, November 2001.

[9] P. Samarati, L. Sweeney, “Generalizing
data to provide anonymity when
disclosing information”, in Proc.The
17th ACM-SIGMOD-SIGACT-SIGART
Symposium on the Principles of
Database Systems, Seattle, WA, 1998,
pp. 188-198.

[10] T. Dalenius, “Finding a needle in a
haystack – or identifying anonymous
census record”, Journal of Official
Statistics, vol. 2, nr.3, pp. 329-336,
1986.

[11] A. Meyerson, R. Williams, “On the
complexity of optimal k-anonymity”, in
Proc. of the 23rd ACM SIGMOD-
SIGACT-SIGART Symposium on
Principles of Database Systems, Paris,
France, June 2004, pp. 223-228.

[12] A. Evfimievski, R. Srikant, R. Agrawal,
J. Gehrke, “Privacy preserving mining of
association rules”, in Proc. of the 8th
ACM SIGKDD International Conference
on Knowledge Discovery and Data
Mining, Edmonton, Alberta, Canada,
July 2002, pp. 75-82.

[13] R. J. Bayardo, R. Agrawal, “Data
privacy through optimal k-
anonymization”, In Proc. of the
International Conference on Data
Engineering (ICDE’05), Tokyo, Japan,
April 2005, pp. 217–228.

[14] K. Emam, F. Dankar, R. Issa, etal, “A
Globally Optimal k-Anonymity Method
for the De-Identification of Health
Data”, Journal of the American Medical
Informatics Association, vol. 16, no. 5,
pp. 670-682 September-October 2009.

[15] L. Ahn, A. Bortz, N. Hopper, “K-
anonymous message transmission”, in
Proc. The 10th ACM conference on
Computer and communications
security, New York, USA, 2003, pp.
122-130.

[16] A. Pîrjan, “Improving software
performance in the Compute Unified
Device Architecture”, Revista

Economy Informatics, vol. 11, no. 1/2011

60

Informatica Economica, vol. 14, no. 4, pp. 30-47, 2010.

Ion LUNGU is a Professor at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from the
Academy of Economic Studies of Bucharest. He has graduated the Faculty of
Economic Cybernetics in 1974, holds a PhD diploma in Economics from
1983 and, starting with 1999 is a PhD coordinator in the field of Economic
Informatics. He is the author of 41 books in the domain of economic
informatics, 57 published articles (among which 20 articles ISI indexed or

included in international databases) and 39 scientific papers published in conferences
proceedings (among which 5 papers ISI indexed and 15 included in international databases).
He participated (as director or as team member) in more than 20 research projects that have
been financed from national research programs. He is a CNCSIS expert evaluator and
member of the scientific board for the ISI indexed journal Economic Computation and
Economic Cybernetics Studies and Research. He is also a member of INFOREC professional
association and honorific member of Economic Independence academic association. In 2005
he founded the master program Databases for Business Support, who’s manager he is and in
2010 he founded Databases Journal. His fields of interest include Databases, Design of
Economic Information Systems, Database Management Systems, Decision Support Systems,
Executive Information Systems, Business Intelligence.

Alexandru PÎRJAN has graduated the Faculty of Computer Science for
Business Management in 2005. He holds a MA Degree in Computer Science
for Business from 2007. He joined the staff of the Romanian-American
University as a stagier teaching assistant in 2005 and a Lecturer Assistant in
2008. He is a PhD candidate since 2009 at the Doctoral School from the
Bucharest Academy of Economic Studies. He is currently a member of the
Department of Informatics, Statistics and Mathematics from the Romanian-

American University. He is the author of more than 20 journal articles, and a member in 4
national scientific research projects. His work focuses on database applications, artificial
intelligence and quality of software applications.

	The K-Anonymity Approach in Preserving the Privacy of E-Services
	that Implement Data Mining
	2Romanian-American University, Bucharest, Romania

